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Vortex shedding and the development of a wake behind a rotationally oscillating circular cylinder was
investigated using a hybrid vortex method at a Reynolds number of 1000 over a wide range of forcing
frequency and amplitude. The normalised peripheral velocity}oscillation amplitude of the cylinder
ranged from 0 to 3 while the ratio of forcing frequency to the vortex-shedding frequency from
a stationary cylinder varied from 0 to 10. The time-dependent pressure, lift and drag forces exerted on
the cylinder were studied together with the #ow patterns in the wake. Some behaviours of vortex
shedding are revealed and the lock-on range for vortex shedding is obtained. It is found that, in the
case of a very low frequency ratio, vortices are shed at a frequency close to that from a stationary
cylinder when the amplitude is small; however, the vortices are shed at cylinder-oscillation frequency
when the amplitude is large. When the frequency ratio is close to 1, the form of vortex shedding and
lock-on exhibit a particularly strong resonance between the #ow perturbations and the vortex wake,
and the mean value of the drag coe$cients increases remarkably. Its maximum value increases with
increasing amplitude within the lock-on range and shifts towards the lower frequency end of the
lock-on range. When the frequency ratio is greater than a certain value beyond the lock-on range,
small-scale vortices are shed at the forcing frequency in the near wake. Subsequently, these vortices
coalesce and result in a large-scale antisymmetrical structure in the far wake similar to the KaH rmaH n
vortex street past a stationary cylinder. The mean value of the drag coe$cients decreases in the post
lock-on frequency range. The larger the amplitude, the more distinct is the drag coe$cient decrease,
and the minimum value is lower than that for #ow past a stationary cylinder. After the minimum is
reached, the drag coe$cient increases again with further increase in cylinder-oscillation frequency and
approaches the value for the stationary cylinder. ( 2001 Academic Press.
1. INTRODUCTION

THE STUDY OF VORTEX SHEDDING from an oscillating blu! body has fascinated researchers for
a long time. The occurrence of this #ow phenomenon is due to instabilities and depends on
the geometry of blu! body and the Reynolds number. It has often been the cause of
#ow-induced failure of structures in various "elds of engineering. The study of periodic
vortex shedding and wake development behind a blu! body remains to be one of the most
challenging problems in #uid mechanics, since it can lead to better understanding of the
cause of vortex-induced vibration and its subsequent suppression and control.
0889}9746/01/070981#27 $35.00/0 ( 2001 Academic Press



982 M. CHENG, Y. T. CHEW AND S. C. LUO
Studies on #ow past an oscillating cylinder can be divided into the following two
categories depending on the motion of the cylinder. In the "rst category, the cylinder
oscillates translationally at an angle of 03 or 903 with respect to the free stream. They are
in-line and transverse oscillation, respectively. Many experimentalists (Bishop & Hassan
1964; Koopmann 1967; Taneda 1972; Gri$n & Ramberg 1974; Bearman & Currie 1979;
Bearman 1984; Ongoren & Rockwell 1988a, b; Williamson & Roshko 1988) had shown that
the vortex shedding phenomenon can be dramatically altered for the cylinder undergoing
in-line and transverse oscillation in a #uid stream. For in-line oscillations, vortex lock-on
occurs when the oscillation frequencies are approximately twice the Strouhal frequency (the
frequency of the vortex shedding from a stationary cylinder). For transverse oscillations,
lock-on usually occurs near the Strouhal frequency (Gri$n & Hall 1991; Meneghini
& Bearman 1995).

In the second category, the cylinder performs a rotational oscillation about its axis in
mean #ow. It is well known that lock-on or resonance occurs when the body and wake
oscillations have the same frequency that is near one of the characteristic frequencies of the
structures. Vortex lock-on can also be realised with rotational oscillations of a circular
cylinder. However, in contrast to the fairly large number of studies conducted in the "rst
category, there is relatively little research carried out in this category.

Viscous #ow around a rotationally oscillating cylinder was investigated experimentally
by Okajima et al. (1975) for Reynolds numbers (Re) of 40}160 and 3050}6100. Their results
showed that, when the oscillation frequency of the cylinder is at or near the frequency of
vortex shedding from a stationary cylinder, the vortex shedding synchronises with the
cylinder motion. Taneda (1978) studied the e!ects of rotational oscillation at Re"30}300,
and showed that, at very high oscillation frequencies, the stagnant-#uid region behind the
cylinder, as well as the vortex-shedding process, could be nearly eliminated. Wu et al. (1989)
and Wu (1990) carried out work similar to Okajima et al. (1975), at Re"300 and 500. Their
results showed that, when the forcing frequency is equal to that of the natural vortex-
shedding frequency of the cylinder, the shed vortices in the wake become more organised,
and both the unsteady lift and drag components reach their maximum. Wu also suggested
that the drag could decrease below that of a stationary cylinder when the frequencies are
mismatched.

More recently, the frequency response of the shear layers separating from a circular
cylinder undergoing small amplitude rotational oscillation has been investigated experi-
mentally by Filler et al. (1991) in water at a Reynolds number range of 250}1200. By
referencing the lock-on analyser to the cylinder oscillations, the amplitude and phase of the
response to di!erent frequency oscillations were measured directly. They found that
rotational oscillations corresponding to cylinder peripheral speeds of between 0.5 and 3%
of the free-stream velocity can be used to in#uence the primary (KaH rmaH n) mode of vortex
generation. For Re greater than 500, such oscillations can also excite the shear-layer
vortices associated with the instability of separating shear layers. Exploratory experiments
have also been carried out by Tokumaru & Dimotakis (1991) on circular cylinders
executing forced rotational oscillations in a steady uniform #ow. They examined the e$cacy
of rotational oscillation as an actuation mechanism for active control of the cylinder wake.
Their experiments showed that working in a control domain, in which the structures of
vortices shed are synchronous with the forcing frequency, provides the greatest control
authority over the wake structure and the #ow phenomena observed are qualitatively the
same over a large range of Reynolds numbers. Their results also showed that rotational
oscillation at very large magnitudes can produce signi"cant reduction in the drag acting on
the cylinder when the forcing frequency and the stationary cylinder vortex-shedding
frequency are mismatched.
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The e!ects of rotationally oscillating cylinder on vortex shedding and wake are of
considerable practical interest from the standpoint of wake modi"cation and the reduction
of #ow-induced vibration. In particular, it is of interest to determine whether at a given
Reynolds number, there is a lock-on range that is similar to the cases of a circular cylinder
undergoing in-line and transverse oscillations in a free stream. On the other hand, although
certain aspects of the behaviour of #ow past a rotationally oscillating cylinder had been
investigated by some researchers (Wu et al. 1989; Tokumaru & Dimotakis 1991; Filler et al.
1991) by using some visualisation techniques, due to the limitations of the experimental
equipment, it is di$cult to capture the detailed processes of the #uid}body and vortex}
vortex interactions. The above can be overcome by certain numerical simulation tech-
niques.

The earlier numerical studies concerning vortex shedding from a rotationally oscillating
cylinder in a uniform #ow were carried out by Lu & Sato (1996) at Re"200, 1000 and 3000.
The primitive variable form of the Navier}Stokes equations for incompressible #ows was
solved numerically by a fractional step method. The interest of their investigations is #ow
structures of vortex formation and the numerical studies are mostly limited to the cases of
frequency ratio f

c
/ f

0
of 0)5, 1, 2, 3 and 4, and the normalised peripheral velocity amplitude in

the range 0)1 to 3. According to their computed results, the large-scale vortex structures in
the near wake are nearly the same for Re"200, 1000 and 3000. In the range of their
calculated parameters, the lift coe$cients vary at the same vortex-shedding frequencies for
f
c
/ f

0
43. However, for higher oscillating frequencies, the frequency of the lift variation is

less than that of the vortex shedding for f
c
/ f

0
"4. Similar work was carried out by Chou

(1997). Recently, using a spectral-"nite di!erence method, the #ow induced by a rotationally
oscillating and translating circular cylinder was investigated by Dennis et al. (2000) at
Re"500 in a range of f

c
/ f

0
"0)883}2)5, and Re"1000 at two values of f

c
/ f

0
"1)25 and

2)5. The normalised oscillating amplitude is "xed at 1. They found that, for f
c
/ f

0
"2)5, the

near wake does not involve adjacent corotating vortex coalescence, and as a result of this,
the usual behaviour of the drag coe$cient is observed. This is rather unlike the case when
Re"500. Thus, the Reynolds number seems to have more in#uence on the structures and
the #uid forces at higher forcing frequency than at lower values, which is in contrast with the
"nding of Lu & Sato (1996). However, the common points of interest of the investigations
are #ow structures of vortex formation at di!erent Reynolds number, and the numerical
studies are mostly limited to the cases of vortex-shedding resonance. At low Reynolds
number, the quasiperiodicity in the wake of a rotationally oscillating cylinder is studied by
Baek & Sung (2000). A direct numerical simulation is made to portray the unsteady
dynamics of wake #ows at Re"110. The normalised forcing frequency f

c
/ f

0
varies in

a range of 0)87}1)1 and the velocity amplitude of oscillation is 5% of the free-stream
velocity. They found that, within the lock-on regime, the shedding frequency bifurcates with
one frequency following the forcing frequency while the other gradually converges to the
natural shedding frequency.

In the present work, the unsteady #ow past a rotationally oscillating circular cylinder is
studied numerically over a much wider range of forcing frequency and amplitude. A hybrid
vortex method, which was previously presented and applied to the situation of #ow past
a rotating circular cylinder (Chew et al. 1995; Cheng et al. 1997), is used to simulate this type
of #ow at the same Reynolds number, Re"1000. This Reynolds number is identical to that
investigated by Lu & Sato (1996) and Dennis et al. (2000) for two-dimensional #ow.
Although it is well known that three-dimensional e!ects begin to occur when Re'180 for
#ow past a stationary circular cylinder, it is not unreasonable to believe that the transitional
Reynolds number would be much higher for a rotationally oscillating cylinder since
a strong two-dimensional rotational disturbance is imposed on the #ow. As the present
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method is very e$cient computationally, it allows computation over a long period in order
to investigate the development of vortex wake and the global behaviour of lift and drag
force. The approach used to understand the vortex-formation process is to trace the motion
of #uid particles, which leads to streaklines similar to those observed in a smoke wire #ow
visualisation. The primary objective is to investigate the in#uence of the oscillating ampli-
tude and forcing frequency in both lock-on and nonlock-on regimes on the wake structure,
pressure distributions, lift and drag force on the cylinder. The secondary objective is to
determine the basic vortex-shedding structure in the near wake, the lock-on regime, and the
parameter range in which the mean value of drag force is lower than that for #ow past
a stationary cylinder.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

Consider the two-dimensional #ow of a viscous incompressible #uid of constant velocity
;I
=

past a rotationally oscillating cylinder of radius aJ . The cylinder rotates sinusoidally at
an angular velocity uJ (tJ ), which gives

;I
w
(tJ )"aJ uJ (t)"AI

m
sin(2n fI

c
tJ ), (1)

where;I
w

is the peripheral velocity of the cylinder, AI
m
("aJ uJ

.!9
) is the velocity amplitude of

the cylinder oscillation, uJ
.!9

is the maximum value of the angular velocity, and fI
c
is the

oscillating frequency. The origin of the frame of reference (rJ , h) coincides with the centre of
the cylinder which oscillates rotationally about its own axis.

The governing equations in dimensionless form for the #ow are

Lf
Lt

!e~2m
L(t, f)

L (m, h)
"

2

Re
e~2m A

L2f
Lm2

#

L2f
Lh2B , (2)

and

L2t
Lm2

#

L2t
Lh2

"!e2mf. (3)

The relationship of between stream function (t) and vorticity (f) with velocity (u) is
described by

u"$](tk), fk"$]u. (4)

The boundary conditions for t50 de"ned by the problem of equations (2) and (3) are

t"0,
Lt
Lm

"!A
m
sin(2n f

c
t) at m"0, (5)

e~m
Lt
Lm

Psin h, f"0 as mPR, (6)

t (m, h, t)"t(m, h#2n, t), f(m, h, t)"f(m, h#2n, t) (7)

and the vorticity boundary condition on the surface of the cylinder is determined from the
Poisson equation (3) (Cheng et al. 1997).
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The following dimensionless variables are introduced:

r"
rJ
aJ

, u"
u8

;I
=

, t"

tJ

;I
=

aJ
, f"

aJ fJ

;I
=

, t"
;I
=

tJ
aJ

,

f"
aJ fJ

;I
=

, A
m
"

aJ uJ
.!9
;I
=

, Re"
2aJ ;I

=
vJ

, (8)

where the tilde denotes the dimensional variables, rJ and h are the usual cylindrical polar
co-ordinates, m"ln r, tJ is the time, vJ is the kinematic viscosity, and fJ represents either the
vortex-shedding frequency ( fJ

v
) or the cylinder-oscillating frequency ( fJ

c
).

The lift, drag, pressure and shear-stress coe$cients are de"ned according to

C
L
"

FI
L

oJ ;I 2
=

aJ
, C

D
"

FI
D

oJ ;I 2
=

aJ
, C

p
"

pJ !pJ
=

1
2
oJ ;I 2

=

, Cp"
pJ
rh

1
2
oJ ;I 2

=

, (9)

where FI
L
, FI

D
, pJ and pJ

rh are lift, drag, pressure and shear stress exerted by the #uid on a unit
length of the cylinder, respectively, pJ

=
is the static pressure at in"nity, and oJ is the #uid

density.
The pressure and shear-stress distributions on the surface of the cylinder are obtained

from the following integration:

C
p
"1!;2

w
#2 P

=

1
A

2

Re

1

r

Lf
Lh

#

Lu
r

Lt
!uhfBdr, (10)

Cp"
4

Re Cr
L
Lr A

uh
r BD

r/1

. (11)

The pressure and the shear-stress components of the drag and lift coe$cients are
obtained from the following integrations:

C
Dp

"!

1

2 P
2n

0

C
p
cos hdh, C

Lp
"!

1

2 P
2n

0

C
p
sin h dh, (12)

C
Dp"!

1

2 P
2n

0

Cp sin h dh, C
Lp"!

1

2 P
2n

0

Cp cos h dh. (13)

The total drag and lift coe$cients are given by

C
D
"C

Dp
#C

Dp , C
L
"C

Lp
#C

Lp . (14)

A hybrid vortex method is used to solve the above problem. It is based on a combination
of di!usion-vortex method and vortex-in-cell method by dividing the #ow "eld into two
regions. In the region near the body surface the di!usion-vortex method is used to solve the
governing equations, while the vortex-in-cell method is used in the exterior domain. The
accuracy and applicability of the method have been described and lot of tests have been
conducted to determine the optimum mesh size and time step by the authors in detail in two
previous papers (Chew et al. 1995; Cheng et al. 1997). Here, the region near the body surface
corresponds to 04m40)4 and the exterior domain corresponds to 0)4(m4m

=
. An

optimal grid system of I]J"257]513 nodes is chosen (Cheng et al. 1997), where I and
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J are the number of grid points in the m and h direction, respectively. The calculation for the
present problem starts at t

0
"0)001, using the Rayleigh solution for the value of vorticity.

The optimal nondimensional time step chosen is Dt"0)02.
In this paper, the velocity amplitude A

m
of the cylinder oscillation ranges from 0 to

3 while the frequency ratio f
c
/ f

0
varies from 0 to 10. Many cases were investigated within

these ranges. However, for brevity, only selected cases will be presented. The special case of
#ow past a stationary circular cylinder ( f

c
/ f

0
"0) has been investigated in earlier work

(Chew et al. 1995). When Re"1000, CM
D
"1)14, the frequency f

0
is equal to 0)103 and the

Strouhal number (2 f
0
) is equal to 0)206.

3. SMALL VELOCITY AMPLITUDE OSCILLATION WITH A
m
"0)25

AND Re"1000

3.1. PATTERN OF VORTEX SHEDDING FROM THE CYLINDER IN THE NEAR WAKE

The near-wake vortex-shedding patterns represented by the streaklines are shown in
Figure 1 for the small velocity amplitude oscillation with A

m
"0)25.

When f
c
/ f

0
"0)2, it is seen from Figure 1(a) that alternately shed vortices which have

approximately the same strength advance downstream and the vortex-shedding frequency
f
v

is equal to f
0
. As the shed vortices shed move steadily away from the cylinder in the

downstream direction, the streaklines exhibit periodic #uctuation with the same frequency
as vortex shedding, as if the behaviour of vortex shedding in the near wake is not a!ected by
the oscillation of the cylinder. In actual fact, when the frequency of the cylinder oscillation is
very low, the e!ect of the oscillation can gradually appear in the far wake as time increases.
This will be observed from the time history of lift coe$cient later.

In the range 0)44 f
c
/ f

0
40)6, although vortices are still shed alternatively at a frequency

f
v
that is close to the frequency f

0
, the strength and size of vortices shed become di!erent.

One interesting phenomenon that is observed is that a weaker and smaller vortex is shed
once every two or three cycles as shown in Figure 1(b). This is more clearly demonstrated in
the animated #ow visualisation when the variation with time is captured continuously. This
phenomenon can be explained in terms of the interaction between the oscillating cylinder
and the #uid. In the range 0)44f

c
/ f

0
40)6, the vortex strength is weaker when the

rotational oscillation decreases the relative velocity between the #uid and the side of the
cylinder where the vortex is to be shed, mainly because of the decreased generation of
vorticity in the boundary layer. Within this range of f

c
/ f

0
where f

c
is not synchronised with

f
0
, such an event occurs once in every two to three cycles of vortex shedding.
When f

c
/ f

0
"0)8, the patterns of streaklines evolution are found to be basically the same

as those at f
c
/ f

0
"0)2. Vortices similar in size but with opposite sign are shed from both

sides of the cylinder as shown in Figure 1(c). However, the vortex-shedding frequency f
v
is

no longer equal to f
0
. In fact, vortices are shed at the frequency f

c
. This means that the

cylinder and the vortex shedding have the same characteristic frequency ( f
v
"f

c
) and

lock-on or resonance has taken place. When f
c
/ f

0
increases to 1)2, the phenomena that one

out of every two or three vortices shed by the cylinder is weaker in strength and smaller in
size is observed again, as shown in Figure 1(d). The asymmetric pattern of vortex shedding
is broken down.

As f
c
/ f

0
further increases, the process of vortex formation is completely di!erent from that

of the previous cases. Figure 1(e) shows that, at f
c
/ f

0
"5, the small-scale vortices of opposite

sign are generated at the frequency f
c
from both sides of the cylinder, and they &&assemble''

behind the cylinder and form a large-scale vortex which is then detached from the cylinder.
In other words, the vortex does not detach from the cylinder until both its strength and size



Figure 1. Patterns of instantaneous streaklines for A
m
"0)25 at di!erent frequencies f

c
/ f

0
.
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have grown to a certain level. The same phenomenon was observed by Filler et al. (1991) in
their #ow visualisation experiment at Re "925. The present calculation found that the
mean dimensionless time-units required for the shedding of a large-scale vortex are 6, 5)5,
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and 5)2 at f
c
/ f

0
"2, 3 and 5, respectively. When the f

c
/ f

0
is su$ciently high, it is found that

the pattern of streakline evolution approaches the case of f
c
/ f

0
"0. It takes about 10

dimensionless time-units for a cycle of vortex shedding to be completed. The mean value of
the large-scale vortex shedding frequency estimated from 10 vortex-shedding cycles is 0)102.
This is in close agreement with the value of f

v
("0)103) for the case of f

c
/ f

0
"0. It indicates

that, when f
c
/ f

0
is greater than a certain limiting value, the e!ect of rotational oscillation is

primarily con"ned to the #ow near the cylinder, and its in#uence on the far-"eld vortex
structure is insigni"cant. The small vortices shed in the near wake coalesce to form
large-scale vortices that are similar in form and frequency to the KaH rmaH n vortex street of
a stationary circular cylinder.

3.2. SURFACE PRESSURE DISTRIBUTION

Figure 2 is a plot of the calculated pressure coe$cient on the surface of the cylinder at
di!erent forcing frequencies for A

m
"0)25. In previous experimental and numerical studies

for #ow past a rotationally oscillating circular cylinder reviewed in the introduction, the
pressure distributions around the cylinder have not been presented. The behaviour of the
pressure coe$cient C

p
is related to vortex shedding. For example, when a vortex is shed

from the lower side of the cylinder, the #uid needs a higher velocity to pass over the upper
part of the cylinder. The higher #uid velocity induces a lower surface pressure, and as
a result, the pressure coe$cient C

p
reaches its extreme value at about the same time as when

a vortex is shed. The position of minimum pressure coe$cient C
p

on the surface of the
cylinder depends on the present positions of the vortices, which are controlled by the
frequency f

c
/ f

0
for a "xed velocity amplitude A

m
. Therefore, the minimum position C

p
varies

as the frequency f
c
/ f

0
changes.

In the case of low frequency, f
c
/ f

0
"0)4, Figure 2(a) shows that the position and

magnitude of the minimum surface pressure vary with time. When a vortex is shed from the
lower side of the cylinder at t"70, the minimum suction pressure on the upper half of the
cylinder reaches!2)4, and its location is at b+903 (b"1803!h ). When a vortex is shed
from upper side of the cylinder at t"75, the minimum suction pressure location is at
b+2803, and the value is about !1)5. The asymmetry of minimum suction pressure
location and its magnitude between the upper and lower half of cylinder lends further
support to the uneven strength of vortex shedding and asymmetry of wake as observed
previously when it is outside the lock-on range.

When f
c
/ f

0
"1 [Figure 2(b)], the frequency f

v
adjusts to the forcing frequency f

c
. The

variation of the pressure coe$cient C
p
on the surface of the cylinder with time is similar to

the case of a stationary circular cylinder at the same Reynolds number (Chew et al. 1995),
except that during lock-on the minimum pressure is shifted towards the back of the cylinder
at b+90 and 2703, and the value of C

p
reaches about!2)3, which is about 60% lower than

that of the stationary cylinder. Furthermore, the #uctuation in the pressure coe$cient
C

p
becomes larger in the range 6034b43003. Therefore, lock-on is associated with large

#uctuation in the lift and drag forces due to stronger shed vortices which gain additional
vorticity from the oscillating process.

As the frequency f
c
/ f

0
increases beyond the lock-on region, the minimum pressure

shifts upstream, as shown in Figure 2(c, d). When f
c
/ f

0
"2 [Figure 2(c)], the position

of the minimum pressure coe$cient C
p
on the surface of the cylinder is at b+70 and 2903,

and the value is about !2. When f
c
/ f

0
"5 [Figure 2(d)], the position of minimum

value of the pressure coe$cient C
p

coincides with that of f
c
/ f

0
"0. It indicates that

the amplitudes of #uctuation in the lift and drag forces reduce when the frequency f
c
/ f

0
is

high.



Figure 2. Pressure distribution on the surface of the cylinder for A
m
"0)25 at di!erent frequencies:

(a) f
c
/ f

0
"0)4, (b) f

c
/ f

0
"1, (c) f

c
/ f

0
"2, (d) f

c
/ f

0
"5.
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Figure 3. The time variation of C
D

and C
L
, and the power spectra of C

L
for A

m
"0)25 at di!erent frequencies.
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3.3. THE TIME HISTORIES OF LIFT AND DRAG COEFFICIENTS

The time histories of the lift and drag coe$cients as well as the power spectra of the lift
coe$cients are shown in Figure 3. When f

c
/ f

0
"0)2, there are two prominent frequencies in

the lift spectrum as shown in Figure 3(a). They correspond to the vortex-shedding frequency
f
v

and forcing oscillation frequency f
c
. It is clear that the frequency f

v
is much more

dominant. The two main-component frequencies of the lift force can clearly be observed
from the lift coe$cient curve. It indicates that, when f

c
/ f

0
is low, the interaction between

f
v

and f
c

is very weak. The near-sinusoidal variation of the lift curve also indicates the
periodic nature of vortex shedding from the cylinder. The negative peaks are caused by the
shedding of vortices from the upper side of the cylinder, and vice- versa. As the frequency
f
c
/ f

0
increases from 0)2 to 0)4 [Figures 3(b)], there are still two prominent frequencies in the

lift spectrum, but there is a discernible drift of the vortex-shedding frequency f
v
towards the

forcing frequency f
c
. The waveform of the lift signal, which arises from the complex

interaction of the two rivalling frequencies, can be seen in Figure 3(b). The uneven
amplitude of the lift force clearly supports the shedding of vortices with di!erent strength as
discussed earlier. When f

c
is near f

0
, f

v
drifts lower and locks on to f

c
, resulting in only one

dominating component in the lift frequency spectrum. This is shown in Figure 3(c). During
lock-on, the #uctuation amplitude of lift coe$cient is larger than those outside the lock-on
range, and at f

c
/ f

0
"1, it is the highest with a peak amplitude of 1)2. This is also higher than

the case of #ow past a stationary cylinder which has a peak amplitude of 1 (Chew et al.
1995), and lends further support to our earlier proposition that &&the vortices shed during
lock-on are much stronger as the #uid gains additional vorticity from synchronised cylinder
oscillation that provides the largest relative velocity between the cylinder wall and bound-
ary during the vortex formation phase''. When f

c
/ f

0
increases up to 1)2 [Figure 3(d)], the

two dominant frequencies of the lift spectrum reappear, and the lift and drag coe$cients
become less regular. This indicates that lock-on no longer exists at f

c
/ f

0
"1)2, and vortices

of di!erent strength are being shed [see Figures 1(g)], resulting in amplitude variation of lift
coe$cient at the KaH rmaH n vortex-shedding frequency.

The behaviour of the drag coe$cient variation is similar to that of lift coe$cient except
that it occurs at twice the latter frequency.

Table 1 summarises the behaviour of #ow past a rotationally oscillating cylinder for
A

m
"0)25.

4. ROTATIONAL OSCILLATION WITH A
m
"1 AND Re"1000

4.1. PATTERN OF VORTEX SHEDDING FROM THE CYLINDER IN THE NEAR WAKE

These patterns of vortex shedding at A
m
"1 exhibit the following behaviour: when

f
c
/ f

0
"0)2, a pronounced feature is the shedding of a much weaker and smaller vortex once

every two or three cycles, owing to the e!ect of the large velocity amplitude oscillation.
When the frequency f

c
/ f

0
increases from 0)2 to 0)4, it is found that the weaker and smaller

vortex mentioned above becomes increasingly weaker and smaller. It is worth noting in
Figure 4(a, b) that the larger the di!erence in the strength of a pair of vortices shed
alternatively from the cylinder, the more obvious will be their shape di!erence. On the other
hand, comparing with small velocity amplitude oscillation of A

m
"0)25 at the same

frequency of f
c
/ f

0
"0)2, it can be observed that, as the velocity amplitude A

m
of the

oscillating cylinder changes, the positions of the attached vortices and the structure of
vortex shedding from both sides of the cylinder also change. When A

m
"0)25, the positions

of the attached vortices are in the range 9034b42703, and vortices with the same size are
shed alternatively from the two sides of the cylinder [see Figure 1(a)]. When A

m
"1,



TABLE 1
Summary of #ow behaviour past a rotationally oscillating cylinder for A

m
"0)25

f
c
/ f

0
Observed behaviour of #ow

f
c
/ f

0
(0)40 Low cylinder-oscillation frequency is superimposed onto the KaH rmaH n vortex-

shedding frequency.Vortices shed are of even strength and even spacing. Vortex
street meanders at low cylinder-oscillation frequency. Amplitude of lift coe$cient
#uctuation at KaH rmaH n vortex-shedding frequency is uniform.

0)44f
c
/ f

0
(0)8 Vortices shed are of uneven strength and irregular spacing. Vortex-shedding

frequency f
v
remains approximately at f

0
. Amplitude of lift coe$cient is irregular.

0)84f
c
/ f

0
(1)2 Vortex-shedding frequency locks-on to cylinder-oscillation frequency. Vortices

shed are of even strength, even spacing and strong. Amplitude of lift coe$cient is
large and even.

1)24f
c
/ f

0
(2 Same as that for 0)44f

c
/ f

0
(0)8.

f
c
/ f

0
52 High cylinder-oscillation frequency is superimposed onto the large-scale KaH rmaH n

vortex-shedding frequency. Small-scale vortices are shed in the near wake at
cylinder-oscillation frequency. Small-scale vortices coalesce in the near wake to
form the large-scale KaH rmaH n vortex street of uniform vortex strength and spacing
in the far wake. Amplitude of lift coe$cient at KaH rmaH n vortex-shedding frequency
is uniform.
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vortices are still shed alternately, but vortices shed from the two sides of the cylinder can be
rather di!erent in size, and the positions of the attached vortices are in the range
7034b42903.

When f
c
/ f

0
"0)8 the patterns of streaklines evolution are shown in Figure 4(c). The size

and strength of vortex shed increase remarkably, and f
v
" f

c
. Furthermore, one can observe

a weaker secondary vortex of opposite rotation and a growing main vortex appear near the
boundary layer separation points after an already formed main vortex is shed from the
upper or lower side of the cylinder. This secondary vortex merges with the main vortex
before shedding. When the forcing frequency increases to f

c
/ f

0
"2, the size and strength of

the vortices shed decreases further since the vortex formation time which is synchronised to
f
c
is shorter. Vortices are shed at the forcing frequency f

c
from the upper and lower sides of

the cylinder, but the regular vortex con"guration in the near wake is destroyed as shown in
Figure 4(d). An interesting phenomenon that can be observed in Figure 4(d) is that two
oppositely signed vortices interact in the near wake and partially annihilate each other's
vorticity. The remaining vorticity is then fed into the neighbouring vortices with the same
sign. It implies that a new type of wake structure begins to be established in the wake
slightly further away from the cylinder, and the resonance has been destroyed downstream.
As f

c
/ f

0
increases still further, as shown in Figure 4(e), the phenomenon of vortex}vortex

interaction clearly appears in the near wake, and the extent of interaction at a high f
c
/ f

0
is

much stronger than the case at a low f
c
/ f

0
.

Comparing Figure 4(d) with (e), one can observe that the size of vortices shed from the
cylinder decreases when the rotational oscillation frequency is increased. This is expected as
less time is available for each vortex to grow and be shed. At high f

c
/ f

0
, the near-wake region

is therefore occupied by a large number of small-scale vortices. Subsequently, the small-
scale vortices interact with one another and merge into large-scale vortices. A growing
larger-scale vortex is fed by vorticity from the small-scale vortices of the same sign, and it
grows continuously until it is strong enough to draw the opposing shear layer across the
wake. The approach of the oppositely signed shear layer causes the vortex to be shed and
move downstream, and the process is repeated periodically and alternatively.



Figure 4. Patterns of instantaneous streaklines for A
m
"1, at di!erent frequencies f

c
/ f

0
.
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4.2. SURFACE PRESSURE DISTRIBUTION

Figure 5 shows the variation of the pressure coe$cient C
p

at di!erent frequencies f
c
/ f

0
for

the case of A
m
"1. This "gure clearly indicates that the position of minimum surface

pressure changes with the forcing frequency f
c
/ f

0
. When f

c
/ f

0
"0)4 [Figure 5(a)], the



Figure 5. Pressure distribution on the surface of the cylinder for A
m
"1 at di!erent frequencies: (a) f

c
/ f

0
"0)4,

(b) f
c
/ f

0
"1, (c) f

c
/ f

0
"2, (d) f

c
/ f

0
"5.
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separation points change with time over a wide range so that the position of the minimum
pressure varies in the range 6034b41003 and 26034b43003 on the upper and lower
sides of the cylinder, respectively. When t"51 and 53, corresponding to vortex shedding
from the lower and upper side of the cylinder, respectively, during one cycle of vortex
shedding, it is found that the minimum pressure is about !2. However, a value of
C

p.*/
"!3)2 appears periodically and its frequency is the same as the forcing frequency f

c
.

The value of C
p.*/

"!3)2 is found at b+100 and 2603 .
When f

c
/ f

0
"1 [Figure 5(b)], the frequency f

v
adjusts to the forcing frequency f

c
, the

position of minimum surface pressure is at b+140 and 2203, and the magnitude of C
p

is
about !2)6. When f

c
/ f

0
"2 [Figure 5(c)], the minimum C

p
is about !2)2, and the

position varies with time. In addition, the maximum surface pressure also varies with time.
When f

c
/ f

0
"5 the position of minimum surface pressure approaches the same posi-

tion(b+80 and 2803) as when f
c
/ f

0
"0. However, as shown in Figure 5(d), complex

pressure #uctuation appears in the region 903(b(2703 as a result of the high frequency
shedding of small-scale vortices.

4.3. THE TIME HISTORIES OF LIFT AND DRAG COEFFICIENTS

Figure 6 shows the variation of the lift and drag coe$cients with time and the power spectra
of lift coe$cients for A

m
"1. When f

c
/ f

0
"0)2, there are two prominent frequencies in the

spectrum as shown in Figure 6(a). They correspond to the vortex-shedding frequency f
v
,

which is close to f
0
and the forcing oscillation frequency f

c
. It is observed that the peak at f

c
is

higher than the peak at f
v
. The lift-coe$cient curve clearly resembles the shape of

a sinusoidal signal at f
c
that is beaten by another signal at f

v
, thus indicating that there is

signi"cant interaction between the two frequencies. In the range 0)44f
c
/ f

0
40)6, the peak

at f
v

diminishes in magnitude. The lift-coe$cient curves show that the frequency that
dominates is f

c
. The power spectra also show that, unlike the case of A

m
"0)25 where f

v
that

remains approximately at f
0

dominates, in the case of A
m
"1, f

c
dominates and the

small-scale vortex-shedding frequency f
v

does not remain at f
0
+0)1; it drifts higher as

f
c
increases and is approximately 3 times the latter frequency. Although the presence of f

v
is

not obvious in the lift-coe$cient curves, the #ow is not considered to be in the lock-on
range. In the present paper, lock-on is considered to have only occurred if the power spectra
show one only dominating frequency.

For 0)74f
c
/ f

0
(1)8, the frequency of vortex shedding, f

v
, locks-on to the forcing

frequency f
c
. It is found that the amplitude of #uctuation of both the lift and drag

coe$cients increases in the range 0)74f
c
/ f

0
41, and decreases in the range 1(f

c
/ f

0
41)8.

When f
c
/ f

0
"2, two spectral peaks are seen in the lift spectrum in Figure 6(d). It thus

indicates that the lock-on no longer exists. It is found that the mean value of the drag
coe$cient reaches its minimum, and CM

D.*/
+1. The present investigation con"rms Wu's

(1990) conjecture that drag could be decreased below its steady-state magnitude when the
frequency is mismatched.

As f
c
/ f

0
further increases, the lift coe$cient again exhibits the form that results from the

interaction of two prominent frequencies as shown in Figure 6(e, f ). The near-wake
small-scale vortex-shedding frequency f

v
is now locked-on to f

c
and the far-wake large-scale

vortex-shedding frequency f
r
remains approximately at f

0
for #ow past a stationary cylinder.

This renders further support to the #ow visualisation observation as discussed earlier. The
magnitude of lift #uctuation at the frequency f

v
decreases with increasing f

c
as the time

available for feeding of vorticity into each individual small-scale vortex decreases. The
magnitude of lift #uctuation at the frequency f

r
remains constant for f

c
/ f

0
'2, indicating

that the large-scale KaH rmaH n vortex street has reached some stable state.



Figure 6. The time variation of C
D

and C
L
, and the power spectra of C

L
for A

m
"1 at di!erent frequencies.
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TABLE 2
Summary of #ow behaviour past a rotationally oscillating cylinder for A

m
"1

f
c
/ f

0
Observed behaviour of #ow

f
c
/ f

0
(0)4 Low cylinder-oscillation frequency is superimposed onto the KaH rmaH n vortex-

shedding frequency. Vortices shed are of uneven strength and spacing. Vortex
street meanders at low cylinder-oscillation frequency. Amplitude of lift-coe$cient
#uctuation at KaH rmaH n vortex-shedding frequency is nonconstant. Coalescence of
vortices occurs in the far wake.

0)44f
c
/ f

0
(0)7 Vortices shed are of uneven strength and irregular spacing. Vortex-shedding

frequency f
v
does not remain at f

0
but increases with increasing f

c
. Amplitude of

lift coe$cient becomes more regular and constant with time as f
c

increases.
Coalescence of vortices occurs in the far-to-intermediate wake. As f

c
increases,

coalescence of vortices occurs further upstream and the resemblance of far-wake
vortex street to that of stationary cylinder increases. The far-wake vortex street
oscillates at f

c
.

0)74f
c
/ f

0
(1)8 Vortex-shedding frequency locks-on to cylinder-oscillation frequency. Vortices

shed are of even strength, even spacing and strong. Amplitude of lift coe$cient is
large, even and higher than that for A

m
"0)25. It increases in the range

0)74f
c
/ f

0
41 and decreases in the range 1(f

c
/ f

0
(1)8.

1)84f
c
/ f

0
(3 Vortices shed are slightly uneven in strength and irregular spacing. Vortex-shed-

ding frequency f
v

locks-on to f
c

but #uctuation of wake at f
0

can be detected.
Amplitude of lift coe$cient is slightly irregular. Coalescence of vortices occurs in
the near wake.

f
c
/ f

0
53 High cylinder-oscillation frequency is superimposed onto the large-scale KaH rmaH n

vortex-shedding frequency. Small-scale vortices are shed in the near wake at f
c
.

They coalesce in the near wake to form the large-scale KaH rmaH n vortex street of
uniform vortex strength and spacing in the far wake. Amplitude of lift coe$cient at
KaH rmaH n vortex-shedding frequency is uniform, but that at f

c
decreases with

increasing f
c
.
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Table 2 summarises the behaviour of #ow past a rotationally oscillating cylinder for
A

m
"1.

5. LARGE VELOCITY AMPLITUDE OSCILLATION WITH
A

m
"3 AND Re"1000

5.1. PATTERN OF VORTEX SHEDDING FROM THE CYLINDER IN THE NEAR WAKE

Owing to the large quantity of data, only some typical streakline patterns for velocity
amplitude A

m
"3 and f

c
/ f

0
50)6 are shown in Figure 7. When f

c
/ f

0
(0)6, it is found that

the process of the vortex formation behind the cylinder over each half-oscillation period is
similar to the case of #ow past a rotating cylinder. During the "rst half-cycle, a vortex which
is similar to the starting vortex for #ow past a rotating cylinder at the rotational-to-
translational speed ratio (a) of 3 [discussed in Chew et al. (1995)], grows slowly until it
becomes almost as large as the cylinder before it is "nally swept into the wake region by the
free-stream #ow. A mirror image situation then occurs over the second half-cycle. There are
closed streamlines circulating around the cylinder. The above similarity to that observed in
#ow past a rotating cylinder at the speed ratio of 3 (Chew et al. 1995) is expected. In fact,
when the forcing frequency is low but the velocity amplitude is large, during each half-cycle



Figure 7. Patterns of instantaneous streaklines for A
m
"3 at di!erent frequencies f

c
/ f

0
.
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of the oscillation, the #ow &&sees'' the rotationally oscillating cylinder to be simply rotating
with increasing speed in one direction for several revolutions before it reverses. As a result,
the behaviour of #ow past the above cylinder is not too di!erent from that past a purely
rotating cylinder.

When f
c
/ f

0
"0)6, the pattern is completely di!erent from those cases observed at the

same forcing frequency but at A
m
41. For A

m
41, one vortex each is shed from the upper

and lower sides of the cylinder over one cycle, although occasionally the two vortices can be
rather di!erent in strength. When A

m
"3, however, pairs of vortices are shed in the way

shown in Figure 7(a). A main vortex begins to roll up at the top of the cylinder at t"85. It
grows as time increases, and induces a secondary vortex of opposite sign at time t"90. As
time increases, a vortex pair containing two vortices of uneven strength is formed and shed
from the cylinder. At this stage, another main vortex starts to roll up on the lower side of the
cylinder. The paired vortex-shedding process repeats and one cycle of vortex shedding takes
about 20 dimensionless time-units. This phenomenon is in agreement with the observation
by Lu & Sato (1996), where computation was carried out at the same Re and forcing
frequency range. It indicates that, when the forcing frequency is kept constant, greater
values of A

m
not only change the strength of vortices shed, but also the pattern of vortex

shedding.
Figure 7(b) shows the instantaneous streakline patterns of vortex shedding at f

c
/ f

0
"0)8.

The patterns are similar to the f
c
/ f

0
"0)6 case discussed above. The vortex pairs from the

two shear layers appear to be regular and alternate. It is found that, as f
c
/ f

0
increases to 1)5,

the pattern of vortex shedding remains unchanged but the longitudinal vortex spacing is
reduced because of the higher f

c
/ f

0
involved. When the forcing frequency is increased to

f
c
/ f

0
"2 [Figure 7(c)], comparing with the case of A

m
"1 at the same frequency f

c
/ f

0
, it is

found that, although the regular vortex con"guration in the wake is a!ected by vortex
coalescence for A

m
"1 [see Figure 4(d)], there is no such change in the pattern of vortex

shedding for A
m
"3. However, a further shortening of the vortex formation length and the

longitudinal vortex spacing is observed [Figure 7(c)]. It indicates that the frequency range
of lock-on increases with increasing A

m
.

As f
c
/ f

0
increases still further, as shown in Figure 7(d), the phenomenon of vortex}vortex

interaction described earlier appears in the wake. When f
c
/ f

0
55, the patterns of vortex

shedding presented in Figure 7(d, e) look rather like that for A
m
"1 at the same frequency

f
c
/ f

0
. The small-scale vortices are shed at f

c
from both sides of the cylinder, the like-sign

vortices coalesce behind the cylinder and the strength of vortices shed is much stronger than
that of A

m
41. The wake structure remains essentially unchanged, even if the frequency or

velocity amplitude is increased, and the streaklines in the wake exhibit similar pattern.

5.2. SURFACE PRESSURE DISTRIBUTION

It is interesting to note how the coe$cient C
p

varies with the frequency f
c
/ f

0
during the

oscillation motion. The present results show that the pressure distribution changes sharply
at some instances. These changes are associated with the shedding of vortices, as mentioned
earlier. Overall, the pressure distribution patterns have been found to be quite repeatable
from one cycle to another, although they may experience some occasional changes. It is
observed from Figure 8 that the positions of minimum and maximum surface pressure are
forcing frequency dependent. In the case of low frequency f

c
/ f

0
"0)4, because the separ-

ation positions change with time over a wide range [see Figure 8(a)], the position and
magnitude of the minimum surface pressure are thus also time dependent. At t"45,
the minimum pressure is located at b"1353 with a magnitude of about!6)5. At t"50,
the minimum surface pressure is shifted to b"903 and the magnitude is C

p
+!5)6. At the



Figure 8. Pressure distribution on the surface of the cylinder for A
m
"3 at di!erent frequencies: (a) f

c
/ f

0
"0)4,

(b) f
c
/ f

0
"1, (c) f

c
/ f

0
"2, (d) f

c
/ f

0
"5.
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same time, the stagnation point, which is characterised by a maximum in surface pressure,
also moves with time. At t"50 and 60, the stagnation points are at b"340 and 503,
respectively, and the magnitude is less than 1 because of the centrifugal force induced by
rotation.

When f
c
/ f

0
"1 [Figure 8(b)], vortices are shed alternately from the upper and lower sides

of the cylinder, and the minimum surface pressure occurs at t"68 and 72 and at b+120
and 2403, respectively, with a magnitude of about !5)2. During lock-on, the minimum
surface pressure is shifted towards the back of the cylinder, resulting in large #uctuation in
the drag force. Another interesting feature observed is that the pressure coe$cient C

p
at

b+03 varies with time in range of!1)84C
p
41. When f

c
/ f

0
"2, the lock-on feature can

still be observed in Figure 8(c), but the di!erence between maximum and minimum pressure
decreases. This is because the strength of vortices shed decreases on increasing the frequency
f
c
/ f

0
.

As the frequency f
c
/ f

0
increases out of the lock-on region [Figure 8(d)], the minimum

suction pressure shifts upstream and the amplitude of the pressure variation evidently
becomes smaller. Also, a complex variation in surface pressure appears in the region
903(b(2703 because, when f

c
/ f

0
is high, the #ow near the cylinder is dominated by the

shedding of many small vortices at cylinder-oscillation frequency, as discussed previously.
For f

c
/ f

0
"5, the minimum surface pressure locations (at di!erent t) are at b+75 and 2853,

and the magnitude of C
p

in both cases is about!2)2.

5.3. THE TIME HISTORIES OF LIFT AND DRAG COEFFICIENTS

Figure 9 shows the time histories of the lift and drag coe$cients as well as the power spectra
of the lift coe$cient for A

m
"3. When f

c
/ f

0
"0)2 [Figure 9(a)], it is clear that a low

frequency component dominates the lift force. If each peak (both positive and negative
peaks) in the lift-coe$cient curve is related to the shedding of one vortex, then Figure 9(a)
suggests that there should be eight large vortices in the wake when the dimensionless time
t reaches 200 or four oscillation periods. Therefore, a vortex is shed in each half of the cycle.

The power spectral density plots of the lift coe$cient in Figure 9 reveal that, when the
frequency f

c
/ f

0
41)5, besides the fundamental frequency f

c
, a higher harmonic at 3 times the

forcing frequency is also observed. This phenomenon can be explained with reference to
vortex shedding. For large velocity amplitude A

m
of oscillation, when a main vortex is

formed and shed on one side of the cylinder, an adjacent secondary vortex, having opposite
sign to the main vortex, is induced and is annihilated later by the main vortex. As a result,
a &&kink'' exists at the peak and trough of the lift coe$cient versus time trace and a high
frequency component appears in the power spectrum. This &&kink'' induced by the secondary
vortex after the peak (or trough) induced by the primary vortex is most obvious in Figure
9(b, c) when the secondary vortex is clearly discernible at f

c
/ f

0
"0)6. As the forcing

frequency increases, the strength of induced secondary vortex decreases, the #uctuation
generated by it becomes weaker, and eventually disappears entirely when the forcing
frequency exceeds a certain value.

When the frequency f
c
/ f

0
55, as shown in Figure 9(e, f ), there are also two dominating

frequencies in the lift. However, unlike the cases for f
c
/ f

0
41)5, in the present high frequency

situation, one of the peaks is the forcing frequency f
c
while the other is the large-scale vortex

formation frequency f
r

which is close to the KaH rmaH n vortex-shedding frequency for #ow
past a stationary cylinder.

It is di$cult to de"ne the lower boundary of the lock-on range in this case as higher
harmonic frequencies are present for f

c
/ f

0
41)5. Even at f

c
/ f

0
"0)2, the large-scale vortex-

shedding frequency appears to be already locked-on to the cylinder-oscillation frequency f
c
.



Figure 9. The time variation of C
D

and C
L
, and the power spectra of C

L
for A

m
"3 at di!erent frequencies.
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TABLE 3
Summary of #ow behaviour past a rotationally oscillating cylinder for A

m
"3

f
c
/ f

0
Observed behaviour of #ow

f
c
/f
0
(0)5 Large-scale vortex shedding at cylinder-oscillation frequency. The shed vortex is

similar to the starting vortex observed for #ow past a rotating cylinder at speed
ratio of 3. KaH rmaH n vortex-shedding frequency is not present but the third higher
harmonic of f

c
is. The wake width is very wide. Amplitude of lift coe$cient

increases with increasing f
c
.

0)54f
c
/ f

0
43 Vortex-shedding frequency locks-on to cylinder-oscillation frequency. At

f
c
/ f

0
40)8, vortex pairs containing two vortices of uneven strength and opposite

sign are shed from each side of the cylinder and the lift-coe$cient curve shows
kinks. Amplitude of lift coe$cient is large, even higher than that for A

m
"0)25 and

1. It increases with increasing f
c
.

f
c
/ f

0
'3 High cylinder-oscillation frequency is superimposed onto the large-scale KaH rmaH n

vortex-shedding frequency. Small-scale vortices are shed in the near wake at f
c
.

They coalesce in the near wake to form the large-scale KaH rmaH n vortex street of
uniform vortex strength and spacing in the far wake. The amplitude of lift
coe$cient at KaH rmaH n vortex-shedding frequency is uniform, but that at f

c
de-

creases with increasing f
c
.
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The lower boundary was loosely de"ned at around f
c
/ f

0
+0)5, although a third higher

harmonic frequency ("3 f
c
) is still present. It was chosen mainly because the wake width

has begun to narrow down. The upper boundary of the lock-on range was de"ned when the
small-scale vortices in the near wake coalesce to form a large-scale vortex street which
begins to appear at the KaH rmaH n vortex-shedding frequency f

0
.

Table 3 summarises the behaviour of #ow past a rotationally oscillating cylinder for
A

m
"3.

6. THE GLOBAL CHARACTERISTICS OF FLOW

Figure 10 shows the variation of the root-mean-square value of the lift coe$cients with the
forcing frequency and velocity amplitude. It is observed that all the #uctuations in the lift
coe$cients peak in the vicinity of f

c
+f

0
(i.e., f

c
/ f

0
+1) and its higher harmonics. As

expected, the peak value is the largest near f
0
, and diminishes in amplitude with increasing

harmonics of f
0
. The r.m.s. values of the drag coe$cients behave similarly. The present

results are in agreement with the experimental results of Okajima et al. (1975).
Figure 11 describes the variation of the mean values of the drag coe$cients CM

D
with the

oscillation frequency and velocity amplitude. The maximum mean drag over the range
shown increases with increasing velocity amplitude. When A

m
"0)25, 0)5, 1, 2 and 3, the

maximum CM
D

is 1)4, 1)6, 1)8, 2)4 and 2)9 and occurs at f
c
/ f

0
+1, 0)9, 0)85, 0)7 and 0)6,

respectively. This is within the lock-on range of the respective A
m
. When lock-on occurs, the

vortices formed in the near-wake region are strong resulting in higher suction pressure. This
is supported by the pressure distribution curves presented in Figures 2, 5 and 8. The
locked-on vortices increase in strength with increasing A

m
as stronger vorticity generated by

the moving wall is being fed to the vortices, and thus the maximum CM
D

is higher at large A
m
.

The shift in the peak of CM
D

to lower f
c
/ f

0
, i.e., lower end of lock-on range, as A

m
increases

may be explained by the vortex formation time. As f
c
/ f

0
decreases, the vortex formation

time within the lock-on range at "xed A
m

increases, resulting in more vorticity being fed to
the near-wake vortices. This leads to CM

D
peaks at the lower f

c
/ f

0
end of the lock-on range at



Figure 10. Variation of r.m.s. value of lift coe$cients with A
m

and f
c
/ f

0
.

Figure 11. Variation of mean value of drag coe$cients with A
m

and f
c
/ f

0
.
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a particular A
m
. As the lock-on range increases with increasing A

m
, the peak of CM

D
thus

shifts to lower f
c
/ f

0
at higher A

m
.

It is interesting to note that, when A
m
"1, 2 and 3, the mean value of the drag coe$cient

reaches a minimum of 1, 0)9 and 0)7 at f
c
/ f

0
+1)8, 3 and 4, respectively, which is lower than

the mean value of the drag coe$cient of a stationary cylinder. This tendency becomes more
evident as the velocity amplitude increases. The reason is that the frequencies are mis-
matched when lock-on ends and a new vortex con"guration is formed in the wake. The
mismatch of cylinder oscillation and vortex-shedding frequencies may have prevented the
formation of strong vortices in the near wake resulting in a lower near-wake suction
pressure. When A

m
"2, the present result is in close agreement with the result of Lu & Sato

(1996) at the same Reynolds number. Furthermore, the present results follow the trend
reported by Tokumaru & Dimotakis (1991) at Re"1)5]104. The discrepancies with their
results could be due to the Reynolds number or three-dimensional e!ects. The rotational
oscillation at very large magnitudes can produce signi"cant reduction in the drag acting on
the cylinder when the forcing frequency and the stationary cylinder vortex-shedding



Figure 12. The fundamental lock-on band and vortex structure in the near wake.
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frequency are mismatched. For example, at A
m
"3 and f

c
/ f

0
"4, a 40% reduction in the

mean drag can be achieved.
One of the objectives of investigating #ow past an oscillating body is to determine the

lock-on range. In the present result, the boundary between the lock-on and no lock-on
regimes is estimated from the spectral analysis of lift coe$cients and vortex structure in the
near wake. The lower limit of lock-on is located at f

v
"f

c
and f

c
(f

0
. The upper limit of

lock-on is located where f
r
, the frequency associated with the reappearance of KaH rmaH n

vortices due to coalescence of small-scale vortices, begins to appear.
The classi"cation of the di!erent vortex structures in the near wake and the relationship

between the range of lock-on frequencies and A
m

for the present investigation is shown in
Figure 12. When A

m
"0)25, lock-on occurs in the range 0)84f

c
/ f

0
(1)2. When A

m
"1, it

is in the range 0)74f
c
/ f

0
(1)8. When A

m
"3, the range becomes 0)54f

c
/ f

0
43.

7. CONCLUSIONS

Based on the numerical investigation conducted at various A
m

and f
c
/ f

0
, the following

conclusions can be made.
1. For A

m
(1, when the frequency f

c
/ f

0
is very low, vortices are shed at frequency

f
v
(+f

0
) from the cylinder. Vortices shed are of even strength and spacing. The vortex street

meanders at a low cylinder-oscillation frequency. When the frequency f
c
/f
0

is below the
lock-on frequency, the vortices shed are of uneven strength and irregular spacing. The
vortex-shedding frequency f

v
remains approximately at f

0
and the amplitude of the lift

coe$cient is irregular.
2. For A

m
"1, when the frequency f

c
/ f

0
is below the lock-on frequency, although the

vortices shed are of uneven strength and irregular spacing, the vortex-shedding frequency
f
v
does not remain at f

0
but increases with increasing f

c
. The amplitude of the lift coe$cient

becomes more regular and constant with time as f
c
increases. The coalescence of vortices

occurs in the intermediate-to-far wake. As f
c
increases, coalescence of vortices occurs further

upstream and the resemblance of the far-wake vortex street to that of a stationary cylinder
increases. The far-wake vortex street oscillates at f

c
.
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3. For A
m
'1, when the frequency f

c
/ f

0
is very low, large-scale vortices are shed at

cylinder-oscillation frequency. The wake is very wide. When the frequency f
c
/ f

0
is below the

lock-on frequency, vortex pairs of uneven strength are shed from each side of the cylinder
and the lift-coe$cient curve shows kinks.

4. For all A
m
, when the frequency f

c
/ f

0
is close to 1, the vortex shedding is locked-on to

the forcing frequency in the classical manner, and the form of vortex shedding and lock-on
exhibit a particularly strong resonance between the #ow perturbations and the vortex wake.
The lock-on frequency range increases with increasing velocity amplitude A

m
, and at

A
m
"0)25, 1 and 3, the f

c
/ f

0
ranges are 0)8}1)2, 0)7}1)8 and 0)5}3, respectively.

5. For all A
m
, when the frequency f

c
/ f

0
is greater than 1 in the post-lock-on range, the

vortices are shed at frequency f
v
"f

c
in the near wake. The size of vortices shed decreases

with increasing f
c
/ f

0
, and the strength of vortices shed increases with increasing A

m
. The

range of frequency ratio f
c
/ f

0
over which cylinder oscillation dictates the vortex-shedding

frequency f
v
increases as the oscillation velocity amplitude A

m
increases. Over a wide range

of f
c
/ f

0
, the vortices shed at the frequency f

c
from the cylinder interact in the wake and result

in a large-scale antisymmetrical structure with the frequency f
r
. This large-scale vortex

structure is similar in form and frequency to the KaH rmaH n vortex street downstream of
a stationary cylinder. The frequency f

r
varies with increasing f

c
/ f

0
and is approximately

equal to the frequency f
0

when f
c
/ f

0
'5.

6. The root-mean-square values of the lift and drag coe$cients increase remarkably
when the cylinder oscillates with a frequency that is at or near f

0
. Lock-on is associated with

large #uctuations in the lift and drag forces. When A
m
"0)25, 0)5, 1, 2 and 3, the maximum

CM
D

is 1)4, 1)6, 1)8, 2)4 and 2)9 and occurs at f
c
/ f

0
+1, 0)9, 0)85, 0)7 and 0)6, respectively,

within the lock-on range, i.e., the peak increases with increasing A
m

and shifts to the lower
frequency end of the lock-on range. When the frequency ratio is greater than a certain value
beyond the lock-on range, the mean value of the drag coe$cients CM

D
decreases with

increasing f
c
/ f

0
. The larger the amplitude of oscillation, the more distinct is the decrease in

drag coe$cient. When A
m
"1, 2 and 3, the minimum CM

D
is 1, 0)9 and 0)7 and occurs at

f
c
/ f

0
+1)8, 3 and 4, i.e., lower than that for #ow past a stationary cylinder. After the

minimum is reached, the drag coe$cient increases again with increasing f
c
/ f

0
and ap-

proaches the value of the stationary cylinder.
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